数据分析——第一章:第一节数据载入及初步观察

复习:这门课程得主要目的是通过真实的数据,以实战的方式了解数据分析的流程和熟悉数据分析python的基本操作。知道了课程的目的之后,我们接下来我们要正式的开始数据分析的实战教学,完成kaggle上泰坦尼克的任务,实战数据分析全流程。 这里有两份资料: 教材《Python for Data Analysis》和 baidu.com & google.com(善用搜索引擎)

1 第一章:数据载入及初步观察

1.1 载入数据

数据集下载 https://www.kaggle.com/c/titanic/overview

1.1.1 任务一:导入numpy和pandas

1
2
3
4
#写入代码
import pandas as pd
import numpy as np

【提示】如果加载失败,学会如何在你的python环境下安装numpy和pandas这两个库

1.1.2 任务二:载入数据

  1. 使用相对路径载入数据
  2. 使用绝对路径载入数据
1
2
3
4
5
#写入代码
import os
os.getcwd()
test=pd.read_csv('./titanic/test.csv')
train=pd.read_csv('./titanic/train.csv')
1
2
3
4
5
6
7
8
#写入代码
abs_path_test=os.path.abspath('./titanic/test.csv')
print(abs_path_test)
test=pd.read_csv(abs_path_test)
abs_path_train=os.path.abspath('./titanic/train.csv')
print(abs_path_train)
train=pd.read_csv(abs_path_train)
train.head()
/workspace/WuTeachingAI/hands-on-data-analysis/myself/titanic/test.csv
/workspace/WuTeachingAI/hands-on-data-analysis/myself/titanic/train.csv
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th… female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

【提示】相对路径载入报错时,尝试使用os.getcwd()查看当前工作目录。
【思考】知道数据加载的方法后,试试pd.read_csv()和pd.read_table()的不同,如果想让他们效果一样,需要怎么做?了解一下’.tsv’和’.csv’的不同,如何加载这两个数据集?
【总结】加载的数据是所有工作的第一步,我们的工作会接触到不同的数据格式(eg:.csv;.tsv;.xlsx),但是加载的方法和思路都是一样的,在以后工作和做项目的过程中,遇到之前没有碰到的问题,要多多查资料吗,使用googel,了解业务逻辑,明白输入和输出是什么。

1
2
3
# pd.read_csv() 和 pd.read_table() 本质上非常相似,主要区别在于默认的分隔符参数。
# 通过显式设置 `sep` 参数,可以让它们处理各种以不同字符分隔的文本文件。
# '.csv' 文件用逗号分隔,'.tsv' 文件用制表符分隔。选择合适的pandas读取函数或正确设置`sep`参数即可加载。

1.1.3 任务三:每1000行为一个数据模块,逐块读取

1
2
3
4
#写入代码
chunker=pd.read_csv('./titanic/train.csv',chunksize=1000)
for chunk in chunker:
print(chunk)
     PassengerId  Survived  Pclass  \
0              1         0       3   
1              2         1       1   
2              3         1       3   
3              4         1       1   
4              5         0       3   
..           ...       ...     ...   
886          887         0       2   
887          888         1       1   
888          889         0       3   
889          890         1       1   
890          891         0       3   

                                                  Name     Sex   Age  SibSp  \
0                              Braund, Mr. Owen Harris    male  22.0      1   
1    Cumings, Mrs. John Bradley (Florence Briggs Th...  female  38.0      1   
2                               Heikkinen, Miss. Laina  female  26.0      0   
3         Futrelle, Mrs. Jacques Heath (Lily May Peel)  female  35.0      1   
4                             Allen, Mr. William Henry    male  35.0      0   
..                                                 ...     ...   ...    ...   
886                              Montvila, Rev. Juozas    male  27.0      0   
887                       Graham, Miss. Margaret Edith  female  19.0      0   
888           Johnston, Miss. Catherine Helen "Carrie"  female   NaN      1   
889                              Behr, Mr. Karl Howell    male  26.0      0   
890                                Dooley, Mr. Patrick    male  32.0      0   

     Parch            Ticket     Fare Cabin Embarked  
0        0         A/5 21171   7.2500   NaN        S  
1        0          PC 17599  71.2833   C85        C  
2        0  STON/O2. 3101282   7.9250   NaN        S  
3        0            113803  53.1000  C123        S  
4        0            373450   8.0500   NaN        S  
..     ...               ...      ...   ...      ...  
886      0            211536  13.0000   NaN        S  
887      0            112053  30.0000   B42        S  
888      2        W./C. 6607  23.4500   NaN        S  
889      0            111369  30.0000  C148        C  
890      0            370376   7.7500   NaN        Q  

[891 rows x 12 columns]

【思考】什么是逐块读取?为什么要逐块读取呢?

【提示】大家可以chunker(数据块)是什么类型?用for循环打印出来出处具体的样子是什么?

1
2
3
4
5
6
7
8
9
10
11
12
13
# **什么是逐块读取?**
# 逐块读取(Chunking)是指在读取大型数据集时,不一次性将整个文件加载到内存中,而是将文件分成若干个小的数据块(chunks),每次只加载和处理一个数据块。
# 在pandas中,可以通过在 `pd.read_csv()` 或类似的读取函数中设置 `chunksize` 参数来实现逐块读取。`chunksize` 定义了每个数据块包含的行数。
#
# **为什么要逐块读取呢?**
# 1. **处理内存不足的大文件**:
# * 当数据集非常大,其大小超过了计算机可用内存时,一次性加载整个文件会导致内存溢出错误(MemoryError)。逐块读取允许我们分批处理数据,每次只在内存中保留一小部分数据,从而有效避免内存问题。
# 2. **提高处理效率(特定场景下)**:
# * 对于某些类型的操作,例如对数据进行迭代处理、过滤或聚合,如果不需要同时访问所有数据,逐块处理可以使得程序更快地开始处理数据,而不是等待整个大文件加载完毕。
# * 可以边读取边处理,实现流式数据处理的效果。
# 3. **数据清洗和预处理**:
# * 在对大型原始数据进行初步的清洗、转换或特征工程时,可以逐块进行,将处理后的数据块追加到新的存储中,或者在每个块上计算统计量并逐步累积。

1.1.4 任务四:将表头改成中文,索引改为乘客ID [对于某些英文资料,我们可以通过翻译来更直观的熟悉我们的数据]

PassengerId => 乘客ID
Survived => 是否幸存
Pclass => 乘客等级(1/2/3等舱位)
Name => 乘客姓名
Sex => 性别
Age => 年龄
SibSp => 堂兄弟/妹个数
Parch => 父母与小孩个数
Ticket => 船票信息
Fare => 票价
Cabin => 客舱
Embarked => 登船港口

1
2
3
4
#写入代码
#将"乘客ID"列作为行索引
df=pd.read_csv('./titanic/train.csv',names=['乘客ID','是否幸存','仓位等级','姓名','性别','年龄','兄弟姐妹个数','父母子女个数','船票信息','票价','客舱','登船港口'],index_col='乘客ID',header=0)
df.head()
是否幸存 仓位等级 姓名 性别 年龄 兄弟姐妹个数 父母子女个数 船票信息 票价 客舱 登船港口
乘客ID
1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th… female 38.0 1 0 PC 17599 71.2833 C85 C
3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

【思考】所谓将表头改为中文其中一个思路是:将英文列名表头替换成中文。还有其他的方法吗?

1.2 初步观察

导入数据后,你可能要对数据的整体结构和样例进行概览,比如说,数据大小、有多少列,各列都是什么格式的,是否包含null等

1.2.1 任务一:查看数据的基本信息

1
2
3
4
#写入代码
df.info()
df.describe()

<class 'pandas.core.frame.DataFrame'>
Index: 891 entries, 1 to 891
Data columns (total 11 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   是否幸存    891 non-null    int64  
 1   仓位等级    891 non-null    int64  
 2   姓名      891 non-null    object 
 3   性别      891 non-null    object 
 4   年龄      714 non-null    float64
 5   兄弟姐妹个数  891 non-null    int64  
 6   父母子女个数  891 non-null    int64  
 7   船票信息    891 non-null    object 
 8   票价      891 non-null    float64
 9   客舱      204 non-null    object 
 10  登船港口    889 non-null    object 
dtypes: float64(2), int64(4), object(5)
memory usage: 83.5+ KB
是否幸存 仓位等级 年龄 兄弟姐妹个数 父母子女个数 票价
count 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000
mean 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208
std 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429
min 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000
25% 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400
50% 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200
75% 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000
max 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200

【提示】有多个函数可以这样做,你可以做一下总结

1.2.2 任务二:观察表格前10行的数据和后15行的数据

1
2
#写入代码
df.head(15)
是否幸存 仓位等级 姓名 性别 年龄 兄弟姐妹个数 父母子女个数 船票信息 票价 客舱 登船港口
乘客ID
1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th… female 38.0 1 0 PC 17599 71.2833 C85 C
3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
6 0 3 Moran, Mr. James male NaN 0 0 330877 8.4583 NaN Q
7 0 1 McCarthy, Mr. Timothy J male 54.0 0 0 17463 51.8625 E46 S
8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 1 349909 21.0750 NaN S
9 1 3 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0 2 347742 11.1333 NaN S
10 1 2 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1 0 237736 30.0708 NaN C
11 1 3 Sandstrom, Miss. Marguerite Rut female 4.0 1 1 PP 9549 16.7000 G6 S
12 1 1 Bonnell, Miss. Elizabeth female 58.0 0 0 113783 26.5500 C103 S
13 0 3 Saundercock, Mr. William Henry male 20.0 0 0 A/5. 2151 8.0500 NaN S
14 0 3 Andersson, Mr. Anders Johan male 39.0 1 5 347082 31.2750 NaN S
15 0 3 Vestrom, Miss. Hulda Amanda Adolfina female 14.0 0 0 350406 7.8542 NaN S
1
2
#写入代码
df.tail()

1.2.4 任务三:判断数据是否为空,为空的地方返回True,其余地方返回False

1
2
#写入代码
df.isnull().head()
是否幸存 仓位等级 姓名 性别 年龄 兄弟姐妹个数 父母子女个数 船票信息 票价 客舱 登船港口
乘客ID
1 False False False False False False False False False True False
2 False False False False False False False False False False False
3 False False False False False False False False False True False
4 False False False False False False False False False False False
5 False False False False False False False False False True False

【总结】上面的操作都是数据分析中对于数据本身的观察

【思考】对于一个数据,还可以从哪些方面来观察?找找答案,这个将对下面的数据分析有很大的帮助

1.3 保存数据

1.3.1 任务一:将你加载并做出改变的数据,在工作目录下保存为一个新文件train_chinese.csv

1
2
3
#写入代码
# 注意:不同的操作系统保存下来可能会有乱码。大家可以加入`encoding='GBK' 或者 ’encoding = ’utf-8‘‘`
df.to_csv('./titanic/train_chinese.csv',encoding='utf-8')

【总结】数据的加载以及入门,接下来就要接触数据本身的运算,我们将主要掌握numpy和pandas在工作和项目场景的运用。