【回顾&引言】前面一章的内容大家可以感觉到我们主要是对基础知识做一个梳理,让大家了解数据分析的一些操作,主要做了数据的各个角度的观察。那么在这里,我们主要是做数据分析的流程性学习,主要是包括了数据清洗以及数据的特征处理,数据重构以及数据可视化。这些内容是为数据分析最后的建模和模型评价做一个铺垫。
开始之前,导入numpy、pandas包和数据
1 2 3 import numpy as npimport pandas as pd
1 2 3 df = pd.read_csv('./titanic/train.csv' ) df.head(3 )
PassengerId
Survived
Pclass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
Cabin
Embarked
0
1
0
3
Braund, Mr. Owen Harris
male
22.0
1
0
A/5 21171
7.2500
NaN
S
1
2
1
1
Cumings, Mrs. John Bradley (Florence Briggs Th…
female
38.0
1
0
PC 17599
71.2833
C85
C
2
3
1
3
Heikkinen, Miss. Laina
female
26.0
0
0
STON/O2. 3101282
7.9250
NaN
S
2 第二章:数据清洗及特征处理
我们拿到的数据通常是不干净的,所谓的不干净,就是数据中有缺失值,有一些异常点等,需要经过一定的处理才能继续做后面的分析或建模,所以拿到数据的第一步是进行数据清洗,本章我们将学习缺失值、重复值、字符串和数据转换等操作,将数据清洗成可以分析或建模的亚子。
2.1 缺失值观察与处理
我们拿到的数据经常会有很多缺失值,比如我们可以看到Cabin列存在NaN,那其他列还有没有缺失值,这些缺失值要怎么处理呢
2.1.1 任务一:缺失值观察
请查看每个特征缺失值个数
请查看Age, Cabin, Embarked列的数据
以上方式都有多种方式,所以大家多多益善
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 PassengerId 891 non-null int64
1 Survived 891 non-null int64
2 Pclass 891 non-null int64
3 Name 891 non-null object
4 Sex 891 non-null object
5 Age 714 non-null float64
6 SibSp 891 non-null int64
7 Parch 891 non-null int64
8 Ticket 891 non-null object
9 Fare 891 non-null float64
10 Cabin 204 non-null object
11 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
PassengerId 0
Survived 0
Pclass 0
Name 0
Sex 0
Age 177
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 687
Embarked 2
dtype: int64
1 2 3 df[['Age' ,'Cabin' ,'Embarked' ]].head(3 )
Age
Cabin
Embarked
0
22.0
NaN
S
1
38.0
C85
C
2
26.0
NaN
S
外层 [] 是 DataFrame 的索引操作符。 内层 [] 是 Python
原生的列表语法,用于传递多个列名。
2.1.2 任务二:对缺失值进行处理
(1)处理缺失值一般有几种思路
请尝试对Age列的数据的缺失值进行处理
请尝试使用不同的方法直接对整张表的缺失值进行处理
1 2 3 4 5 df[df['Age' ]==None ]=0 df.head(3 )
PassengerId
Survived
Pclass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
Cabin
Embarked
0
1
0
3
Braund, Mr. Owen Harris
male
22.0
1
0
A/5 21171
7.2500
NaN
S
1
2
1
1
Cumings, Mrs. John Bradley (Florence Briggs Th…
female
38.0
1
0
PC 17599
71.2833
C85
C
2
3
1
3
Heikkinen, Miss. Laina
female
26.0
0
0
STON/O2. 3101282
7.9250
NaN
S
1 2 3 df[df['Age' ].isnull()] df[df['Age' ].isnull()] = 0
1 2 df[df['Age' ] == np.nan] = 0
【思考1】dropna和fillna有哪些参数,分别如何使用呢?
PassengerId
Survived
Pclass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
Cabin
Embarked
1
2
1
1
Cumings, Mrs. John Bradley (Florence Briggs Th…
female
38.0
1
0
PC 17599
71.2833
C85
C
3
4
1
1
Futrelle, Mrs. Jacques Heath (Lily May Peel)
female
35.0
1
0
113803
53.1000
C123
S
5
0
0
0
0
0
0.0
0
0
0
0.0000
0
0
PassengerId
Survived
Pclass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
Cabin
Embarked
0
1
0
3
Braund, Mr. Owen Harris
male
22.0
1
0
A/5 21171
7.2500
0
S
1
2
1
1
Cumings, Mrs. John Bradley (Florence Briggs Th…
female
38.0
1
0
PC 17599
71.2833
C85
C
2
3
1
3
Heikkinen, Miss. Laina
female
26.0
0
0
STON/O2. 3101282
7.9250
0
S
【思考】检索空缺值用np.nan,None以及.isnull()哪个更好,这是为什么?如果其中某个方式无法找到缺失值,原因又是为什么?
【参考】https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html
【参考】https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html
2.2 重复值观察与处理
由于这样那样的原因,数据中会不会存在重复值呢,如果存在要怎样处理呢
2.2.1
任务一:请查看数据中的重复值
PassengerId
Survived
Pclass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
Cabin
Embarked
17
0
0
0
0
0
0.0
0
0
0
0.0
0
0
19
0
0
0
0
0
0.0
0
0
0
0.0
0
0
26
0
0
0
0
0
0.0
0
0
0
0.0
0
0
28
0
0
0
0
0
0.0
0
0
0
0.0
0
0
29
0
0
0
0
0
0.0
0
0
0
0.0
0
0
…
…
…
…
…
…
…
…
…
…
…
…
…
859
0
0
0
0
0
0.0
0
0
0
0.0
0
0
863
0
0
0
0
0
0.0
0
0
0
0.0
0
0
868
0
0
0
0
0
0.0
0
0
0
0.0
0
0
878
0
0
0
0
0
0.0
0
0
0
0.0
0
0
888
0
0
0
0
0
0.0
0
0
0
0.0
0
0
176 rows × 12 columns
2.2.2 任务二:对重复值进行处理
(1)重复值有哪些处理方式呢?
(2)处理我们数据的重复值
方法多多益善
1 2 3 4 df = df.drop_duplicates() df.head()
PassengerId
Survived
Pclass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
Cabin
Embarked
0
1
0
3
Braund, Mr. Owen Harris
male
22.0
1
0
A/5 21171
7.2500
NaN
S
1
2
1
1
Cumings, Mrs. John Bradley (Florence Briggs Th…
female
38.0
1
0
PC 17599
71.2833
C85
C
2
3
1
3
Heikkinen, Miss. Laina
female
26.0
0
0
STON/O2. 3101282
7.9250
NaN
S
3
4
1
1
Futrelle, Mrs. Jacques Heath (Lily May Peel)
female
35.0
1
0
113803
53.1000
C123
S
4
5
0
3
Allen, Mr. William Henry
male
35.0
0
0
373450
8.0500
NaN
S
2.2.3
任务三:将前面清洗的数据保存为csv格式
1 2 3 4 df.to_csv('test_clear.csv' )
2.3 特征观察与处理
我们对特征进行一下观察,可以把特征大概分为两大类:
数值型特征:Survived ,Pclass, Age ,SibSp, Parch,
Fare,其中Survived, Pclass为离散型数值特征,Age,SibSp, Parch,
Fare为连续型数值特征
文本型特征:Name, Sex, Cabin,Embarked, Ticket,其中Sex, Cabin,
Embarked,
Ticket为类别型文本特征,数值型特征一般可以直接用于模型的训练,但有时候为了模型的稳定性及鲁棒性会对连续变量进行离散化。文本型特征往往需要转换成数值型特征才能用于建模分析。
2.3.1
任务一:对年龄进行分箱(离散化)处理
分箱操作是什么?
将连续变量Age平均分箱成5个年龄段,并分别用类别变量12345表示
将连续变量Age划分为[0,5) [5,15) [15,30) [30,50)
[50,80)五个年龄段,并分别用类别变量12345表示
将连续变量Age按10% 30% 50% 70%
90%五个年龄段,并用分类变量12345表示
将上面的获得的数据分别进行保存,保存为csv格式
1 2 3 4 ''' 分箱操作(Binning)是数据预处理中的一种常用技术,主要用于将连续型数值转换为离散的区间(即“箱子”或“分组”) '''
1 2 3 4 5 6 df['AgeBand' ] = pd.cut(df['Age' ], 5 ,labels = [1 ,2 ,3 ,4 ,5 ]) df.head()
PassengerId
Survived
Pclass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
Cabin
Embarked
AgeBand
0
1
0
3
Braund, Mr. Owen Harris
male
22.0
1
0
A/5 21171
7.2500
NaN
S
2
1
2
1
1
Cumings, Mrs. John Bradley (Florence Briggs Th…
female
38.0
1
0
PC 17599
71.2833
C85
C
3
2
3
1
3
Heikkinen, Miss. Laina
female
26.0
0
0
STON/O2. 3101282
7.9250
NaN
S
2
3
4
1
1
Futrelle, Mrs. Jacques Heath (Lily May Peel)
female
35.0
1
0
113803
53.1000
C123
S
3
4
5
0
3
Allen, Mr. William Henry
male
35.0
0
0
373450
8.0500
NaN
S
3
1 2 3 4 5 df['AgeBand' ] = pd.cut(df['Age' ],[0 ,5 ,15 ,30 ,50 ,80 ],labels = [1 ,2 ,3 ,4 ,5 ]) df.head(3 )
PassengerId
Survived
Pclass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
Cabin
Embarked
AgeBand
0
1
0
3
Braund, Mr. Owen Harris
male
22.0
1
0
A/5 21171
7.2500
NaN
S
3
1
2
1
1
Cumings, Mrs. John Bradley (Florence Briggs Th…
female
38.0
1
0
PC 17599
71.2833
C85
C
4
2
3
1
3
Heikkinen, Miss. Laina
female
26.0
0
0
STON/O2. 3101282
7.9250
NaN
S
3
1 2 3 4 df['AgeBand' ] = pd.qcut(df['Age' ],[0 ,0.1 ,0.3 ,0.5 ,0.7 ,0.9 ],labels = [1 ,2 ,3 ,4 ,5 ]) df.head()
PassengerId
Survived
Pclass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
Cabin
Embarked
AgeBand
0
1
0
3
Braund, Mr. Owen Harris
male
22.0
1
0
A/5 21171
7.2500
NaN
S
2
1
2
1
1
Cumings, Mrs. John Bradley (Florence Briggs Th…
female
38.0
1
0
PC 17599
71.2833
C85
C
5
2
3
1
3
Heikkinen, Miss. Laina
female
26.0
0
0
STON/O2. 3101282
7.9250
NaN
S
3
3
4
1
1
Futrelle, Mrs. Jacques Heath (Lily May Peel)
female
35.0
1
0
113803
53.1000
C123
S
4
4
5
0
3
Allen, Mr. William Henry
male
35.0
0
0
373450
8.0500
NaN
S
4
【参考】https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html
【参考】https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.qcut.html
2.3.2 任务二:对文本变量进行转换
查看文本变量名及种类
将文本变量Sex, Cabin ,Embarked用数值变量12345表示
将文本变量Sex, Cabin, Embarked用one-hot编码表示
1 2 3 4 5 6 print (df['Sex' ].value_counts(), df['Cabin' ].value_counts(), df['Embarked' ].value_counts())
Sex
male 453
female 261
0 1
Name: count, dtype: int64 Cabin
B96 B98 4
G6 4
C23 C25 C27 4
F2 3
C22 C26 3
..
E36 1
D7 1
C118 1
C99 1
D37 1
Name: count, Length: 135, dtype: int64 Embarked
S 554
C 130
Q 28
0 1
Name: count, dtype: int64
1 2 3 df['Sex' ].unique() df['Sex' ].nunique()
3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 df['Sex_num' ] = df['Sex' ].replace(['male' ,'female' ],[1 ,2 ]) df.head() df['Sex_num' ] = df['Sex' ].map ({'male' : 1 , 'female' : 2 }) df.head() from sklearn.preprocessing import LabelEncoderfor feat in ['Cabin' , 'Ticket' ]: lbl = LabelEncoder() label_dict = dict (zip (df[feat].unique(), range (df[feat].nunique()))) df[feat + "_labelEncode" ] = df[feat].map (label_dict) df[feat + "_labelEncode" ] = lbl.fit_transform(df[feat].astype(str )) df.head()
/tmp/ipykernel_1400/2627332835.py:5: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`
df['Sex_num'] = df['Sex'].replace(['male','female'],[1,2])
PassengerId
Survived
Pclass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
…
Age_66.0
Age_70.0
Age_70.5
Age_71.0
Age_74.0
Age_80.0
Embarked_0
Embarked_C
Embarked_Q
Embarked_S
0
1
0
3
Braund, Mr. Owen Harris
male
22.0
1
0
A/5 21171
7.2500
…
False
False
False
False
False
False
False
False
False
True
1
2
1
1
Cumings, Mrs. John Bradley (Florence Briggs Th…
female
38.0
1
0
PC 17599
71.2833
…
False
False
False
False
False
False
False
True
False
False
2
3
1
3
Heikkinen, Miss. Laina
female
26.0
0
0
STON/O2. 3101282
7.9250
…
False
False
False
False
False
False
False
False
False
True
3
4
1
1
Futrelle, Mrs. Jacques Heath (Lily May Peel)
female
35.0
1
0
113803
53.1000
…
False
False
False
False
False
False
False
False
False
True
4
5
0
3
Allen, Mr. William Henry
male
35.0
0
0
373450
8.0500
…
False
False
False
False
False
False
False
False
False
True
5 rows × 109 columns
1 2 3 4 5 6 7 8 9 10 11 12 for feat in ["Age" , "Embarked" ]: x = pd.get_dummies(df["Age" ] // 6 ) x = pd.get_dummies(df[feat], prefix=feat) df = pd.concat([df, x], axis=1 ) df.head() df.to_csv('temp.csv' )
2.3.3
任务三:从纯文本Name特征里提取出Titles的特征(所谓的Titles就是Mr,Miss,Mrs等)