复习:在前面我们已经学习了Pandas基础,第二章我们开始进入数据分析的业务部分,在第二章第一节的内容中,我们学习了数据的清洗,这一部分十分重要,只有数据变得相对干净,我们之后对数据的分析才可以更有力。而这一节,我们要做的是数据重构,数据重构依旧属于数据理解(准备)的范围。
开始之前,导入numpy、pandas包和数据
1 2 3
| import numpy as np import pandas as pd
|
1 2 3
| text=pd.read_csv('../第二章项目集合/data/train-left-up.csv') text.head()
|
|
|
PassengerId
|
Survived
|
Pclass
|
Name
|
|
0
|
1
|
0
|
3
|
Braund, Mr. Owen Harris
|
|
1
|
2
|
1
|
1
|
Cumings, Mrs. John Bradley (Florence Briggs Th…
|
|
2
|
3
|
1
|
3
|
Heikkinen, Miss. Laina
|
|
3
|
4
|
1
|
1
|
Futrelle, Mrs. Jacques Heath (Lily May Peel)
|
|
4
|
5
|
0
|
3
|
Allen, Mr. William Henry
|
2 第二章:数据重构
2.4 数据的合并
2.4.1
任务一:将data文件夹里面的所有数据都载入,观察数据的之间的关系
1 2 3 4 5 6 7
| text_left_up=pd.read_csv('../第二章项目集合/data/train-left-up.csv') text_left_down=pd.read_csv('../第二章项目集合/data/train-left-down.csv') text_right_up=pd.read_csv('../第二章项目集合/data/train-right-up.csv') text_right_down=pd.read_csv('../第二章项目集合/data/train-right-down.csv') text_left_up.head()
|
|
|
PassengerId
|
Survived
|
Pclass
|
Name
|
|
0
|
1
|
0
|
3
|
Braund, Mr. Owen Harris
|
|
1
|
2
|
1
|
1
|
Cumings, Mrs. John Bradley (Florence Briggs Th…
|
|
2
|
3
|
1
|
3
|
Heikkinen, Miss. Laina
|
|
3
|
4
|
1
|
1
|
Futrelle, Mrs. Jacques Heath (Lily May Peel)
|
|
4
|
5
|
0
|
3
|
Allen, Mr. William Henry
|
【提示】结合之前我们加载的train.csv数据,大致预测一下上面的数据是什么
2.4.2:任务二:使用concat方法:将数据train-left-up.csv和train-right-up.csv横向合并为一张表,并保存这张表为result_up
1 2 3 4 5
|
list_up = [text_left_up,text_right_up] result_up = pd.concat(list_up,axis=1) result_up.head()
|
|
|
PassengerId
|
Survived
|
Pclass
|
Name
|
Sex
|
Age
|
SibSp
|
Parch
|
Ticket
|
Fare
|
Cabin
|
Embarked
|
|
0
|
1
|
0
|
3
|
Braund, Mr. Owen Harris
|
male
|
22.0
|
1
|
0
|
A/5 21171
|
7.2500
|
NaN
|
S
|
|
1
|
2
|
1
|
1
|
Cumings, Mrs. John Bradley (Florence Briggs Th…
|
female
|
38.0
|
1
|
0
|
PC 17599
|
71.2833
|
C85
|
C
|
|
2
|
3
|
1
|
3
|
Heikkinen, Miss. Laina
|
female
|
26.0
|
0
|
0
|
STON/O2. 3101282
|
7.9250
|
NaN
|
S
|
|
3
|
4
|
1
|
1
|
Futrelle, Mrs. Jacques Heath (Lily May Peel)
|
female
|
35.0
|
1
|
0
|
113803
|
53.1000
|
C123
|
S
|
|
4
|
5
|
0
|
3
|
Allen, Mr. William Henry
|
male
|
35.0
|
0
|
0
|
373450
|
8.0500
|
NaN
|
S
|
2.4.3
任务三:使用concat方法:将train-left-down和train-right-down横向合并为一张表,并保存这张表为result_down。然后将上边的result_up和result_down纵向合并为result。
1 2 3 4 5 6
| list_down=[text_left_down,text_right_down] result_down = pd.concat(list_down,axis=1) result = pd.concat([result_up,result_down]) result.head()
|
|
|
PassengerId
|
Survived
|
Pclass
|
Name
|
Sex
|
Age
|
SibSp
|
Parch
|
Ticket
|
Fare
|
Cabin
|
Embarked
|
|
0
|
1
|
0
|
3
|
Braund, Mr. Owen Harris
|
male
|
22.0
|
1
|
0
|
A/5 21171
|
7.2500
|
NaN
|
S
|
|
1
|
2
|
1
|
1
|
Cumings, Mrs. John Bradley (Florence Briggs Th…
|
female
|
38.0
|
1
|
0
|
PC 17599
|
71.2833
|
C85
|
C
|
|
2
|
3
|
1
|
3
|
Heikkinen, Miss. Laina
|
female
|
26.0
|
0
|
0
|
STON/O2. 3101282
|
7.9250
|
NaN
|
S
|
|
3
|
4
|
1
|
1
|
Futrelle, Mrs. Jacques Heath (Lily May Peel)
|
female
|
35.0
|
1
|
0
|
113803
|
53.1000
|
C123
|
S
|
|
4
|
5
|
0
|
3
|
Allen, Mr. William Henry
|
male
|
35.0
|
0
|
0
|
373450
|
8.0500
|
NaN
|
S
|
2.4.4
任务四:使用DataFrame自带的方法join方法和append:完成任务二和任务三的任务
1 2 3 4 5
| resul_up = text_left_up.join(text_right_up) result_down = text_left_down.join(text_right_down) result = result_up.append(result_down) result.head()
|
2.4.5
任务五:使用Panads的merge方法和DataFrame的append方法:完成任务二和任务三的任务
1 2 3 4 5 6 7 8 9
| ''' 该代码使用 pandas.merge 方法,以索引(index)为键,将两个 DataFrame (text_left_up 和 text_right_up) 横向合并。 ''' result_up = pd.merge(text_left_up,text_right_up,left_index=True,right_index=True) result_down = pd.merge(text_left_down,text_right_down,left_index=True,right_index=True) result = resul_up.append(result_down) result.head()
|
【思考】对比merge、join以及concat的方法的不同以及相同。思考一下在任务四和任务五的情况下,为什么都要求使用DataFrame的append方法,如何只要求使用merge或者join可不可以完成任务四和任务五呢?
2.4.6
任务六:完成的数据保存为result.csv
1 2 3 4
|
result.to_csv('result.csv') result.head()
|
|
|
PassengerId
|
Survived
|
Pclass
|
Name
|
Sex
|
Age
|
SibSp
|
Parch
|
Ticket
|
Fare
|
Cabin
|
Embarked
|
|
0
|
1
|
0
|
3
|
Braund, Mr. Owen Harris
|
male
|
22.0
|
1
|
0
|
A/5 21171
|
7.2500
|
NaN
|
S
|
|
1
|
2
|
1
|
1
|
Cumings, Mrs. John Bradley (Florence Briggs Th…
|
female
|
38.0
|
1
|
0
|
PC 17599
|
71.2833
|
C85
|
C
|
|
2
|
3
|
1
|
3
|
Heikkinen, Miss. Laina
|
female
|
26.0
|
0
|
0
|
STON/O2. 3101282
|
7.9250
|
NaN
|
S
|
|
3
|
4
|
1
|
1
|
Futrelle, Mrs. Jacques Heath (Lily May Peel)
|
female
|
35.0
|
1
|
0
|
113803
|
53.1000
|
C123
|
S
|
|
4
|
5
|
0
|
3
|
Allen, Mr. William Henry
|
male
|
35.0
|
0
|
0
|
373450
|
8.0500
|
NaN
|
S
|
2.5 换一种角度看数据
2.5.1
任务一:将我们的数据变为Series类型的数据
1 2 3 4 5
|
text = pd.read_csv('result.csv') unit_result=text.stack().head(20) unit_result.head()
|
0 Unnamed: 0 0
PassengerId 1
Survived 0
Pclass 3
Name Braund, Mr. Owen Harris
dtype: object
1 2 3
|
unit_result.to_csv('unit_result.csv')
|