数据分析——第二章:第二节数据重构1

复习:在前面我们已经学习了Pandas基础,第二章我们开始进入数据分析的业务部分,在第二章第一节的内容中,我们学习了数据的清洗,这一部分十分重要,只有数据变得相对干净,我们之后对数据的分析才可以更有力。而这一节,我们要做的是数据重构,数据重构依旧属于数据理解(准备)的范围。

开始之前,导入numpy、pandas包和数据

1
2
3
# 导入基本库
import numpy as np
import pandas as pd
1
2
3
# 载入data文件中的:train-left-up.csv
text=pd.read_csv('../第二章项目集合/data/train-left-up.csv')
text.head()
PassengerId Survived Pclass Name
0 1 0 3 Braund, Mr. Owen Harris
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th…
2 3 1 3 Heikkinen, Miss. Laina
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel)
4 5 0 3 Allen, Mr. William Henry

2 第二章:数据重构

2.4 数据的合并

2.4.1 任务一:将data文件夹里面的所有数据都载入,观察数据的之间的关系

1
2
3
4
5
6
7
#写入代码
text_left_up=pd.read_csv('../第二章项目集合/data/train-left-up.csv')
text_left_down=pd.read_csv('../第二章项目集合/data/train-left-down.csv')
text_right_up=pd.read_csv('../第二章项目集合/data/train-right-up.csv')
text_right_down=pd.read_csv('../第二章项目集合/data/train-right-down.csv')
text_left_up.head()

PassengerId Survived Pclass Name
0 1 0 3 Braund, Mr. Owen Harris
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th…
2 3 1 3 Heikkinen, Miss. Laina
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel)
4 5 0 3 Allen, Mr. William Henry

【提示】结合之前我们加载的train.csv数据,大致预测一下上面的数据是什么

2.4.2:任务二:使用concat方法:将数据train-left-up.csv和train-right-up.csv横向合并为一张表,并保存这张表为result_up

1
2
3
4
5
#写入代码
#pandas.concat 是 Pandas 中用于连接 Series 或 DataFrame 对象的核心方法,支持横向(列方向)或纵向(行方向)拼接
list_up = [text_left_up,text_right_up]
result_up = pd.concat(list_up,axis=1)
result_up.head()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th… female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

2.4.3 任务三:使用concat方法:将train-left-down和train-right-down横向合并为一张表,并保存这张表为result_down。然后将上边的result_up和result_down纵向合并为result。

1
2
3
4
5
6
#写入代码
list_down=[text_left_down,text_right_down]
result_down = pd.concat(list_down,axis=1)
result = pd.concat([result_up,result_down])
result.head()

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th… female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

2.4.4 任务四:使用DataFrame自带的方法join方法和append:完成任务二和任务三的任务

1
2
3
4
5
#写入代码
resul_up = text_left_up.join(text_right_up)
result_down = text_left_down.join(text_right_down)
result = result_up.append(result_down)
result.head()

2.4.5 任务五:使用Panads的merge方法和DataFrame的append方法:完成任务二和任务三的任务

1
2
3
4
5
6
7
8
9
#写入代码
'''
该代码使用 pandas.merge 方法,以索引(index)为键,将两个 DataFrame (text_left_up 和 text_right_up) 横向合并。
'''
result_up = pd.merge(text_left_up,text_right_up,left_index=True,right_index=True)
result_down = pd.merge(text_left_down,text_right_down,left_index=True,right_index=True)
result = resul_up.append(result_down)
result.head()

【思考】对比merge、join以及concat的方法的不同以及相同。思考一下在任务四和任务五的情况下,为什么都要求使用DataFrame的append方法,如何只要求使用merge或者join可不可以完成任务四和任务五呢?

2.4.6 任务六:完成的数据保存为result.csv

1
2
3
4
#写入代码

result.to_csv('result.csv')
result.head()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th… female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

2.5 换一种角度看数据

2.5.1 任务一:将我们的数据变为Series类型的数据

1
2
3
4
5
#写入代码
#text.stack() 是 Pandas 中用于将 DataFrame 的列旋转为行的方法
text = pd.read_csv('result.csv')
unit_result=text.stack().head(20)
unit_result.head()
0  Unnamed: 0                           0
   PassengerId                          1
   Survived                             0
   Pclass                               3
   Name           Braund, Mr. Owen Harris
dtype: object
1
2
3
#写入代码

unit_result.to_csv('unit_result.csv')